鳥の渡りや魚の回遊など、一生のうちに「旅」をする動物は多い。しかしその旅は、飢え、迷子、外敵などの危険があり、決して容易な旅ではない。なぜ動物は住み慣れた場所を出て、あえて危険を冒してまで旅をするのか？「月日は百代の過客にして、行きかえらぬまも旅人なり」と姫、松尾芭蕉の「奥の細道」の序文にそのヒントがあった。ヒトにも共通する、動物を旅に「眠り立てるもの」を、ウナギとアユの回遊を例に探ってみたい。

動物はなぜ「旅」をするか？

東京大学海洋研究所　塚本健己

1. 回遊とは何か？

「旅」は生物界に広く見られる現象で、「生きとし生けるもの、皆、旅をする」というのは多いといえばしかるが、動物のみならず、植物やミクロな生き物までもが、その一生のうちにまたからの旅をしています。鳥では「渡り」、魚では「回遊」、哺乳動物では単に「移動」とよばれる生き物たちの旅。英語ではすべてまとめてmigration（マイグレーション）で、ここでは生物の旅をひっくり返して回遊と用います。

生き物の2大目的は、大きく言えば（成長）、子孫をのこす（繁殖）ことです。この2つのイベントについてそれぞれ別の場所で行うようになったとき、生き物は回遊せざるをえなくなるでしょう。したがって回遊とは、成育場と繁殖場の間の定型的移動と理解することできます。ここで複雑な回遊現象を単純化して捉えるために、成育場と繁殖場を結ぶ経路を設定し、これを「回遊環」（migration loop）とよぶことにします。この回遊環の概念は回遊行動の進化、種分化、回遊生態の比較を行うときに役立ちます。原則として、生物は種ごとに独自の回遊環をもち、「1種1回遊環」といえます。したがって、成育場と繁殖場が時間的・空間的にずれることにより、生殖間隔がおくこと。それは結果、種分化が生じるのです。

そもそも動物はなぜ回遊するのでしょうか？「繁殖のため」、「成長のため」、「利得とする環境を求めて」など、種々の理由があげられています。しかし、どれも回遊の一因をとらえにすぎません。繁殖と無関係に行われる回遊もあるし、成長が目的でない回遊もあるからです。どの回遊行動の根拠に共通の理由はあって当然のよう。もっと単
経なものであるに違いないありません。

結論を先にいうと、動物が回遊を始めたのは、それまで慣れ親しんだ環境に不適合を感じ、そこで「脱出」をせざるを得なくなったためではなかったかと考えています。具体的には、その理由は、食不足であったり、水温上昇であったり、あるいは個体密度の増大であったりします。こうした環境のストレスが、動物の内部にその環境から脱出する衝動を高め、最終的には個体をその場から立ち去らせる結果となります。進化し、特化した現世の動物の回遊行動では、生み懸れた環境から脱出した後の目的は決まており、そこに到達するための行動能力や方位決定のメカニズムもしっかりできていますが、原初の形の回遊行動は、まずは前の環境から、とりあえず脱出することから始まったのではないでしょうか？またこれは現世の動物の回遊行動の第一段階でもあると考えています。

動物を回遊に駆り立てる「脱出」の衝動は、ヒトの旅にも当てはめて考えることができます。動物の行動を人間化して考えるのはよくないのだろうかとも言いますが、ヒトによる動物であることを考えると、行動の根拠にある理路は同じものであるはずです。ヒトの旅は動物の回遊に重ね合わせており、松尾芭蕉の紀行記「奥の細道」の序文に「脱出」の衝動を見いだすことができます。ここで芭蕉は東北の旅を思い出立ったいささかを、「月日は百代の遠客にして、行きかれる年をまた旅人なり」と始めています。また、「予も、いざれの年よりか、片言の旅に講して虚栄の言ひとまぎ、海運にさするへ、去年の秋、江上の破屋にくももの古巣を払ひて、やや年を暮れ、春立てる旅の野に、白日の開透えんと、そぞろ神の物につきて心を狂ふぞ、道祖神の霜にあひて取るもの手にかかし、もひきの破れをつづり、笠の結付け替えても、三里に喰培うるより、松陰の月まづ心にかかれて、・・・」と書いています。下線を施したところが、旅の衝動を表現した部分です。なかでも「そぞろ神」は、まさに回遊の衝動を端的に表した言葉として注目されます。「そぞろ」は「気持ちが落ち着かず、そそらすすること」であり、「そぞろ神」は「なんとか人間を誘惑する神」です。動物の回遊行動におけるそぞろ神が何であり、どのようなメカニズムでそぞろ神が現れるかを明らかにするのが、回遊研究の最終ゴールのひとつです。

2．ウナギの回遊

ウナギは海で生まれ、川で成長した後、再び海に帰って産卵し、その一生を終えます。川で生まれ、海で成長し、また別の生まれた川に帰ってくるサケとはちょっと反対の回遊型です。東アジアに分布するニホンウナギはマリアナ諸島西方海域で生まれ、レプトヒタルスとよばれる透明な卵のまま浮き状の仔魚となって、北赤道海流と黒潮を乗り越え、東アジアの国々へやってきます。その距離は8千キロにもなります。

ウナギの回遊の起源を探るために、世界のウナギ属魚類（18種、亜種）を全て集め
てmtDNA遺伝子の解析し、分子系統樹を描き、またアサボ、ウツボ、ウミヘビ、ハモなど、ウナギが属する分類群（ウナギ目）の他の仲間たちについても広く検討してみた。その結果、ウナギは今から約一億年前に、インドネシア・ボルネオ島周辺において中深層性の海水魚から派生し、海と川を行き来する囲遊魚に進化していったことがわかりました。最初ウナギの祖先は、ボルネオ島周辺の深い海にある氷期の海とボルネオ島の河川の間で、短い囲遊圏を作っていましたが、一部のレプトノプシスは、当時氷期に近かった東から西へ地球を一周していた古寒帯赤道海流に乗って、西へ輸送されたものと考えられます。インドネシア大和とローラシア大陆の間で広がっていたテーゼス海を、西へ、西へと流された個体は、やがてジブラルタルを通って北大西洋へ入り、アメリカウナギA.rostrataとヨーロッパウナギAanguillaに分化しています。こうした西への大移動とは別に、南北方を囲遊圏をなぞっていったものもあり、それらのひとつが、わが国はじめアジア一帯に分布するニホンウナギAnguilla japonicaなのです。

海起源のウナギの祖先種がどうして川へ侵入していったか、その理由は推測の域を出ませんが、やはり熱帯浅海域における鰭不足による空腹や他種との競争、あるいは高水温といった不適な環境条件からの他の魚が原因ではなかったかと考えます。そして家賊、河口を発見し、とりあえず河川へ進出したに決まり、熱帯は河川の生産性が高く、海は低いので、河川に進出したウナギの祖先は豊富な餌を得て大きく成長し、資源豊かな海に住む個体に対してより大きな生態をたくさん残すことになりました。その結果、河川に進出した個体の子孫は生き残りが少なく、個体群の中で川へ帰流した個体の子孫の割合が増えていきました。こうした進化進みにより、熱帯におけるウナギの祖先種群のうちに、河川へ回遊する行動が定着し、拡がっていったと考えられます。

3．アユの回遊

秋、川で繁殖したアユの仔魚は、直ちに川の流れにのって海に出ます。秋から冬にかけて約半年間海で成長した後、春になると川へ還遊し、中・上流域でさらに成長を続けます。秋に成長が始まる川を下り、中・下流域の湖で産卵して、わずか一年間の短い一生を終えます。こうしたアユの生活史のうち、春から初夏にかけてみられる稚アユの力強い種々の姿に目覚め、なぜアユは川を流れるのか考えてみましょう。

稚アユの遊泳回遊の中で、主な行動は流水中の遊上行動で、その刺激は明らかに川の上流から下流に向かって流れ続ける流れです。また遊泳回遊は、小さな流れや落ち込み部でもみられる。「とびはね行動」をしばしば伴います。この行動の結果、刺激に弱いぎょ落ちる水（落水）です。刺激が出ると、その反応としてそれぞれの行動が活発になります。しかし、流れや落水などの刺激が一定であっても、水温が上昇したり、空気度が低下することによって、とびはね行動や遊上行動が促進されます。こうした現象は、刺激と変異の間に「勤労」とよばれる中間変異の簿がないと説明できません。勤労
は「動物をある行動に導き立てる内部要因」と定義されており、衝動という言葉により換えることができます。

アマガシの遊河回遊の場合は、その理由は個体と個体が近づきすぎたときに、個体同士を遠ざけようとして個体間から群で行動する。反発性であると考えられます。個に集団が群れにおいて、個体と個体が遠ざかりすぎた場合では、誘引性が働いて両者は近づきます。つまりパラコードが個体と個体の間の距離を一定に保とうとする性質があり、その距離を最適個体間距離といいます。最適個体間距離が破られたときには、それを補正するため、周反応あるいは接近しようとする行動が起こります。その際、個体間には働く理想的「力」を、それぞれ反発性、誘引性と表現しているのです。

最適個体間距離の大きなアユの集団群ほど、反発性が強く、同じ刺激でもよくとびはね、よく過疎することがわかっています。しかし、最適個体間距離はそれぞれの個体群で一定ではなく、水深や空隙度などの環境要因や生理要因により変化します。水深の上昇や空隙度の増大によって最適個体間距離が大きく、動因としての反発性が増すので、行動の閾値が下がり、同じ刺激であっても反応であるとびはね行動や過疎行動が促進される解釈されます。

「とびだし行動」と名付けた興味深い行動があります。これは水深が上昇したときに、藻の刺激がなくても、アマガシが反応をしてあった水槽からとびだしてしまう行動を指しています。これは「真空活動」とよばれ、「とぶ」という行動の動因が上昇し、閾値が限界まで下がったために、刺激がなくても行動が自動的に発揮されてしまった結果と解釈されます。刺激の方向に向かってとぶ、とびはね行動といえ、刺激がないのでもランダムにとぶのがこの行動の特徴です。それはまるで水槽内の環境から逃げ出するために、水槽壁沿いに外に向かってやみくもに「脱出」を試みているようにみえます。動因レベルが極限まで上がった結果として、直接的な刺激なしでも現れるこのランダムな脱出行動は、最初に回遊を始めた個体の原始的な衝動を象しているように考えられます。

4. おわりに

ウナギとアユの研究事例をあげて、魚の同遊行動の起源と進化の過程、および同遊行動の個体間距離を考えてみました。しかし「そぞろ神」の実態はいままだ謎に包まれています。アユの研究から遊河回遊の衝動が反発性であることはわかりましたが、それがいかなる物質であるのか、あるいはどのような神経機序により支配されているのかは明らかではありません、回遊研究の裏面はますます深まるばかりです。